Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biomol Ther (Seoul) ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589295

RESUMO

Endoplasmic reticulum (ER) stress plays a crucial role in liver diseases, affecting various types of hepatic cells. While studies have focused on the link between ER stress and hepatocytes as well as hepatic stellate cells (HSCs), the precise involvement of hepatic macrophages in ER stress-induced liver injury remains poorly understood. Here, we examined the effects of ER stress on hepatic macrophages and their role in liver injury. Acute ER stress led to the accumulation and activation of hepatic macrophages, which preceded hepatocyte apoptosis. Notably, macrophage depletion mitigated liver injury induced by ER stress, underscoring their detrimental role. Mechanistic studies revealed that ER stress stimulates macrophages predominantly via the PERK signaling pathway, regardless of its canonical substrate ATF4. hnRNPA1 has been identified as a crucial mediator of PERK-driven macrophage activation, as the overexpression of hnRNPA1 effectively reduced ER stress and suppressed pro-inflammatory activation. We observed that hnRNPA1 interacts with mRNAs that encode UPR-related proteins, indicating its role in the regulation of ER stress response in macrophages. These findings illuminate the cell type-specific responses to ER stress and the significance of hepatic macrophages in ER stress-induced liver injury. Collectively, the PERK-hnRNPA1 axis has been discovered as a molecular mechanism for macrophage activation, presenting prospective therapeutic targets for inflammatory hepatic diseases such as acute liver injury.

2.
Cell Death Dis ; 15(1): 51, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225223

RESUMO

Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1; also known as TAZ) are the main effectors of the Hippo pathway and their dysregulation contributes to diseases in tissues including the liver. Although mitochondria are capable of transmitting signals to change transcriptomic landscape of diseased hepatocytes, such retrograde signaling and the related nuclear machinery are largely unknown. Here, we show that increased YAP activity is associated with mitochondrial stress during liver injury; and this is required for secondary inflammation, promoting hepatocyte death. Mitochondrial stress inducers robustly promoted YAP/TAZ dephosphorylation, nuclear accumulation, and target gene transcription. RNA sequencing revealed that the majority of mitochondrial stress transcripts required YAP/TAZ. Mechanistically, direct oxidation of RhoA by mitochondrial superoxide was responsible for PP2A-mediated YAP/TAZ dephosphorylation providing a novel physiological input for the Hippo pathway. Hepatocyte-specific Yap/Taz ablation suppressed acetaminophen-induced liver injury and blunted transcriptomic changes associated with the pathology. Our observations uncover unappreciated pathway of mitochondrial stress signaling and reveal YAP/TAZ activation as the mechanistic basis for liver injury progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Sinalização YAP , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fígado/metabolismo , Transdução de Sinais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
Cell Commun Signal ; 22(1): 48, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233853

RESUMO

BACKGROUND: Interferon Regulatory Factor 3 (IRF3) is a transcription factor that plays a crucial role in the innate immune response by recognizing and responding to foreign antigens. Recently, its roles in sterile conditions are being studied, as in metabolic and fibrotic diseases. However, the search on the upstream regulator for efficient pharmacological targeting is yet to be fully explored. Here, we show that G protein-coupled receptors (GPCRs) can regulate IRF3 phosphorylation through of GPCR-Gα protein interaction. RESULTS: IRF3 and target genes were strongly associated with fibrosis markers in liver fibrosis patients and models. Conditioned media from MIHA hepatocytes overexpressing IRF3 induced fibrogenic activation of LX-2 hepatic stellate cells (HSCs). In an overexpression library screening using active mutant Gα subunits and Phos-tag immunoblotting, Gαs was found out to strongly phosphorylate IRF3. Stimulation of Gαs by glucagon or epinephrine or by Gαs-specific designed GPCR phosphorylated IRF3. Protein kinase A (PKA) signaling was primarily responsible for IRF3 phosphorylation and Interleukin 33 (IL-33) expression downstream of Gαs. PKA phosphorylated IRF3 on a previously unrecognized residue and did not require reported upstream kinases such as TANK-binding kinase 1 (TBK1). Activation of Gαs signaling by glucagon induced IL-33 production in hepatocytes. Conditioned media from the hepatocytes activated HSCs, as indicated by α-SMA and COL1A1 expression, and this was reversed by pre-treatment of the media with IL-33 neutralizing antibody. CONCLUSIONS: Gαs-coupled GPCR signaling increases IRF3 phosphorylation through cAMP-mediated activation of PKA. This leads to an increase of IL-33 expression, which further contributes to HSC activation. Our findings that hepatocyte GPCR signaling regulates IRF3 to control hepatic stellate cell transdifferentiation provides an insight for understanding the complex intercellular communication during liver fibrosis progression and suggests therapeutic opportunities for the disease. Video Abstract.


Assuntos
Células Estreladas do Fígado , Interleucina-33 , Humanos , Interleucina-33/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Transdiferenciação Celular , Meios de Cultivo Condicionados , Glucagon/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Fibrose
4.
Biochem Biophys Res Commun ; 681: 186-193, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783116

RESUMO

Primary cilia are essential cellular antennae that transmit external signals into intracellular responses. These sensory organelles perform crucial tasks in triggering intracellular signaling pathways, including those initiated by G protein-coupled receptors (GPCRs). Given the involvement of GPCRs in serum-induced signaling, we investigated the contribution of ciliary proteins in mitogen perception and cell proliferation. We found that depletion of cilia via IFT88 silencing impaired cell growth and repressed YAP activation against serum and its mitogenic constituents, namely lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). To identify the key player of serum mitogen signaling, a mutant cell line library with 30 ablated individual ciliary proteins was established and screened based on YAP dephosphorylation and target gene induction. While 9 of them had altered signaling, ablation of IFT38 or IFT144 led to a particularly robust repression of YAP activation upon LPA and S1P. The deficiency of IFT38 and IFT144 attenuated cell proliferation, as corroborated in either 2-dimensional cultures or tumor spheroids. In subcutaneous skin melanoma patients, expression of IFT38 and IFT144 was associated with unfavorable outcomes in overall survival. In conclusion, our study demonstrates the involvement of ciliary proteins in mitogen signaling and identifies the regulatory roles of IFT38 and IFT144 in serum-mediated Hippo pathway signaling and cellular growth.


Assuntos
Mitógenos , Transdução de Sinais , Humanos , Linhagem Celular , Proliferação de Células , Lisofosfolipídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
5.
Exp Mol Med ; 55(5): 1033-1045, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121980

RESUMO

Memory-phenotype (MP) CD4+ T cells are a substantial population of conventional T cells that exist in steady-state mice, yet their immunological roles in autoimmune disease remain unclear. In this work, we unveil a unique phenotype of MP CD4+ T cells determined by analyzing single-cell transcriptomic data and T cell receptor (TCR) repertoires. We found that steady-state MP CD4+ T cells in the spleen were composed of heterogeneous effector subpopulations and existed regardless of germ and food antigen exposure. Distinct subpopulations of MP CD4+ T cells were specifically activated by IL-1 family cytokines and STAT activators, revealing that the cells exerted TCR-independent bystander effector functions similar to innate lymphoid cells. In particular, CCR6high subpopulation of MP CD4+ T cells were major responders to IL-23 and IL-1ß without MOG35-55 antigen reactivity, which gave them pathogenic Th17 characteristics and allowed them to contribute to autoimmune encephalomyelitis. We identified that Bhlhe40 in CCR6high MP CD4+ T cells as a key regulator of GM-CSF expression through IL-23 and IL-1ß signaling, contributing to central nervous system (CNS) pathology in experimental autoimmune encephalomyelitis. Collectively, our findings reveal the clearly distinct effector-like heterogeneity of MP CD4+ T cells in the steady state and indicate that CCR6high MP CD4+ T cells exacerbate autoimmune neuroinflammation via the Bhlhe40/GM-CSF axis in a bystander manner.


Assuntos
Encefalomielite Autoimune Experimental , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Imunidade Inata , Doenças Neuroinflamatórias , Encefalomielite Autoimune Experimental/metabolismo , Células Th17 , Interleucina-23 , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos , Camundongos Endogâmicos C57BL , Proteínas de Homeodomínio/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
6.
Exp Mol Med ; 55(2): 401-412, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36759578

RESUMO

Endoplasmic reticulum stress is closely associated with the onset and progression of inflammatory bowel disease. ERdj5 is an endoplasmic reticulum-resident protein disulfide reductase that mediates the cleavage and degradation of misfolded proteins. Although ERdj5 expression is significantly higher in the colonic tissues of patients with inflammatory bowel disease than in healthy controls, its role in inflammatory bowel disease has not yet been reported. In the current study, we used ERdj5-knockout mice to investigate the potential roles of ERdj5 in inflammatory bowel disease. ERdj5 deficiency causes severe inflammation in mouse colitis models and weakens gut barrier function by increasing NF-κB-mediated inflammation. ERdj5 may not be indispensable for goblet cell function under steady-state conditions, but its deficiency induces goblet cell apoptosis under inflammatory conditions. Treatment of ERdj5-knockout mice with the chemical chaperone ursodeoxycholic acid ameliorated severe colitis by reducing endoplasmic reticulum stress. These findings highlight the important role of ERdj5 in preserving goblet cell viability and function by resolving endoplasmic reticulum stress.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Proteínas de Choque Térmico HSP40/metabolismo , Dobramento de Proteína , Células Caliciformes/metabolismo , Inflamação , Camundongos Knockout , Estresse do Retículo Endoplasmático , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Apoptose , Chaperonas Moleculares/metabolismo
7.
Biomol Ther (Seoul) ; 31(1): 48-58, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579460

RESUMO

Interferon regulatory factor 3 (IRF3) integrates both immunological and non-immunological inputs to control cell survival and death. Small GTPases are versatile functional switches that lie on the very upstream in signal transduction pathways, of which duration of activation is very transient. The large number of homologous proteins and the requirement for site-directed mutagenesis have hindered attempts to investigate the link between small GTPases and IRF3. Here, we constructed a constitutively active mutant expression library for small GTPase expression using Gibson assembly cloning. Small-scale screening identified multiple GTPases capable of promoting IRF3 phosphorylation. Intriguingly, 27 of 152 GTPases, including ARF1, RHEB, RHEBL1, and RAN, were found to increase IRF3 phosphorylation. Unbiased screening enabled us to investigate the sequence-activity relationship between the GTPases and IRF3. We found that the regulation of IRF3 by small GTPases was dependent on TBK1. Our work reveals the significant contribution of GTPases in IRF3 signaling and the potential role of IRF3 in GTPase function, providing a novel therapeutic approach against diseases with GTPase overexpression or active mutations, such as cancer.

8.
Proc Natl Acad Sci U S A ; 120(1): e2217883120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574685

RESUMO

Antibody heavy chain (HC) and light chain (LC) variable region exons are assembled by V(D)J recombination. V(D)J junctional regions encode complementarity-determining-region 3 (CDR3), an antigen-contact region immensely diversified through nontemplated nucleotide additions ("N-regions") by terminal deoxynucleotidyl transferase (TdT). HIV-1 vaccine strategies seek to elicit human HIV-1 broadly neutralizing antibodies (bnAbs), such as the potent CD4-binding site VRC01-class bnAbs. Mice with primary B cells that express receptors (BCRs) representing bnAb precursors are used as vaccination models. VRC01-class bnAbs uniformly use human HC VH1-2 and commonly use human LCs Vκ3-20 or Vκ1-33 associated with an exceptionally short 5-amino-acid (5-aa) CDR3. Prior VRC01-class models had nonphysiological precursor levels and/or limited precursor diversity. Here, we describe VRC01-class rearranging mice that generate more physiological primary VRC01-class BCR repertoires via rearrangement of VH1-2, as well as Vκ1-33 and/or Vκ3-20 in association with diverse CDR3s. Human-like TdT expression in mouse precursor B cells increased LC CDR3 length and diversity and also promoted the generation of shorter LC CDR3s via N-region suppression of dominant microhomology-mediated Vκ-to-Jκ joins. Priming immunization with eOD-GT8 60mer, which strongly engages VRC01 precursors, induced robust VRC01-class germinal center B cell responses. Vκ3-20-based responses were enhanced by N-region addition, which generates Vκ3-20-to-Jκ junctional sequence combinations that encode VRC01-class 5-aa CDR3s with a critical E residue. VRC01-class-rearranging models should facilitate further evaluation of VRC01-class prime and boost immunogens. These new VRC01-class mouse models establish a prototype for the generation of vaccine-testing mouse models for other HIV-1 bnAb lineages that employ different HC or LC Vs.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Vacinas , Camundongos , Humanos , Animais , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , HIV-1/genética , Anticorpos Anti-HIV , DNA Nucleotidilexotransferase , Regiões Determinantes de Complementaridade/genética , Infecções por HIV/prevenção & controle
9.
Sci Rep ; 12(1): 20170, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424462

RESUMO

We investigated the function of thymosin beta-4 (TB4) expression and primary cilium (PC) formation via the underlying Nrf2-dependent mechanism for cervical cancer cell (CC) survival under conditions of serum deprivation (SD). TB4 silencing was achieved using RNA interference. The percentage of PC formation was analyzed by immunofluorescence staining. Nrf2 expression was modified by the preparation of stable Nrf2-knockdown cells with shNrf2 and the overexpression of Nrf2 with pcDNA-Nrf2 plasmids. Gene expression was measured using reverse-transcription PCR, Gaussia luciferase assay, and western blotting. Cell viability was assessed using the MTT assay or CellTiter Glo assay. Reactive oxygen species (ROS) were detected with flow cytometry. CCs incubated in SD without fetal bovine serum remained viable, and SD increased PC formation and TB4 transcription. CC viability was further decreased by treatment with ciliobrevin A to inhibit PC formation or TB4-siRNA. SD increased ROS, including H2O2. N-acetylcysteine inhibited ROS production following H2O2 treatment or SD, which also decreased PC formation and TB4 transcription. Meanwhile, H2O2 increased PC formation, which was attenuated in response to TB4 siRNA. Treatment with H2O2 increased Nrf2 expression, antioxidant responsive element (ARE) activity, and PC formation, which were inhibited by the Nrf2 inhibitor clobestasol propionate. Nrf2 knockdown via expression of Tet-On shNrf2 enhanced ROS production, leading to increased PC formation and decreased TB4 expression; these effects were counteracted by Nrf2 overexpression. Our data demonstrate that Nrf2 counter-regulates TB4 expression and PC formation for CC survival under conditions of SD, suggesting cervical CC survival could be upregulated by PC formation via Nrf2 activation and TB4 expression.


Assuntos
Fator 2 Relacionado a NF-E2 , Timosina , Humanos , Sobrevivência Celular/genética , Cílios/metabolismo , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/metabolismo , Células HeLa , Timosina/metabolismo
10.
Immunity ; 55(10): 1856-1871.e6, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987201

RESUMO

Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.


Assuntos
Linfócitos B , Centro Germinativo , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos , Epitopos , Imunidade Humoral , Camundongos
11.
Trends Mol Med ; 28(6): 482-496, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35466061

RESUMO

With the advent of cancer immunotherapy, immunomodulation has emerged as an important strategy for the treatment of various diseases. We review recent advances in clinical trials of cell-penetrating peptide (CPP) applications for immunotherapy and also discuss their challenges and opportunities for preclinical studies in various immune diseases. CPP conjugation to antigenic peptides or proteins can enable efficient antigen uptake and cross-presentation by antigen-presenting cells (APCs), which induce both humoral and cytotoxic responses. In addition, CPP-coupled immune modulators can enhance antitumor immunity or anti-inflammatory effects to regulate allergies and autoimmunity. Given their huge advantages in overcoming delivery barriers, CPP-based strategies for immunomodulation could extend drug optimization and advance immunotherapy in various human diseases.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/farmacologia , Humanos , Imunidade , Imunomodulação , Imunoterapia , Preparações Farmacêuticas
12.
FASEB J ; 36(3): e22170, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104011

RESUMO

Chronic endoplasmic reticulum (ER) stress in hepatocytes plays a role in the pathogenesis of nonalcoholic fatty liver disease. Therefore, given the association between oxidative stress, mitochondrial dysfunction, and ER stress, our study investigated the role of NRF2-mediated SIRT3 activation in ER stress. SIRT3, a sirtuin, was predicted as the target of NRF2 based on bioinformatic analyses and animal experiments. Nrf2 abrogation diminished mitochondrial DNA content in hepatocytes with Ppargc1α and Cpt1a inhibition, whereas its overexpression enhanced oxygen consumption. Further, chromatin immunoprecipitation and luciferase reporter assays indicated that NRF2 induced SIRT3 through the antioxidant responsive element (ARE) sites comprising the -641 to -631 bp and -419 to -409 bp regions. In tunicamycin-induced ER stress conditions and liver injury animal models following ER stress, NRF2 levels were highly correlated with SIRT3. Nrf2 deficiency enhanced the tunicamycin-mediated induction of CHOP, which was attenuated by Sirt3 overexpression. Further, Sirt3 delivery to hepatocytes in Nrf2 knockout mice prevented tunicamycin from increasing mortality by decreasing ER stress. SIRT3 was upregulated in livers of patients with nonalcoholic liver diseases, whereas lower SIRT3 expression coincided with more severe disease conditions. Taken together, our findings indicated that NRF2-mediated SIRT3 induction protects hepatocytes from ER stress-induced injury, which may contribute to the inhibition of liver disease progression.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Hepatócitos/metabolismo , Hepatopatias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/metabolismo , Sirtuína 3/metabolismo , Animais , Antioxidantes/metabolismo , Linhagem Celular , DNA Mitocondrial/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fator de Transcrição CHOP/metabolismo , Tunicamicina/farmacologia
13.
Methods Mol Biol ; 2383: 347-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766301

RESUMO

About 30 years ago, the discovery of CPP improved the therapeutic approach to treat diseases and extended the range of potential targets to intracellular molecules. There are potential drug candidates for FDA approval based on active studies in basic research, preclinical, and clinical trials. Various attempts by CPP application to control the diseases such as allergy, autoimmunity, cancer, and infection demonstrated a strategy to make a new drug pipeline for successful discovery of a biologic drug for immune modulation. However, there are still no CPP-based drug candidates for immune-related diseases in the clinical stage. To control immune responses successfully, not only increasing delivery efficiency of CPPs but also selecting potential target cells and cargoes could be important issues. In particular, as it becomes possible to control intracellular targets, efforts to find various novel potential target are being attempted. In this chapter, we focused on CPP-based approaches to treat diseases through modulation of immune responses and discussed for perspectives on future direction of the research for successful application of CPP technology to immune modulation and disease therapy in clinical trial.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/uso terapêutico , Sistemas de Liberação de Medicamentos , Imunidade , Preparações Farmacêuticas
14.
J Cachexia Sarcopenia Muscle ; 12(6): 1669-1689, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34523817

RESUMO

BACKGROUND: Skeletal muscle as a metabolic consumer determines systemic energy homeostasis by regulating myofibre type conversion and muscle mass control. Perturbation of the skeletal muscle metabolism elevates the risk of a variety of diseases including metabolic disorders. However, the regulatory pathways and molecules are not completely understood. The discovery of relevant responsible molecules and the associated network could be an attractive strategy to overcome diseases associated with muscle problems. METHODS: An initial screening using quantitative trait locus analysis enabled us to extract a set of genes including ubiquitin-specific proteases21 (USP21) (r = 0.738; P = 0.004) as potential targets associated with fasting blood glucose content. Given tight regulation of the ubiquitination status of proteins in muscle, we focused on USP21 and generated whole-body (KO) and skeletal muscle-specific USP21 knockout (MKO) mice. Transcriptomics, proteomics, and lipidomics assays in combination with various in vivo and in vitro experiments were performed to understand the functions of USP21 and underlying mechanisms. A high-fat diet (60%)-fed mouse model and diabetic patient-derived samples were utilized to assess the effects of USP21 on energy metabolism in skeletal muscle. RESULTS: USP21 was highly expressed in both human and mouse skeletal muscle, and controlled skeletal muscle oxidative capacity and fuel consumption. USP21-KO or USP21-MKO significantly promoted oxidative fibre type changes (Δ36.6% or Δ47.2%), muscle mass increase (Δ13.8% to Δ22.8%), and energy expenditure through mitochondrial biogenesis, fatty acid oxidation, and UCP2/3 induction (P < 0.05 or P < 0.01). Consistently, cold exposure repressed USP21 expression in mouse skeletal muscle (Δ55.3%), whereas loss of USP21 increased thermogenesis (+1.37°C or +0.84°C; P < 0.01). Mechanistically, USP21 deubiquitinated DNA-PKcs and ACLY, which led to AMPK inhibition. Consequently, USP21 ablation diminished diet-induced obesity (WT vs. USP21-KO, Δ8.02 g, 17.1%, P < 0.01; litter vs. USP21-MKO, Δ3.48 g, 7.7%, P < 0.05) and insulin resistance. These findings were corroborated in a skeletal muscle-specific gene KO mouse model. USP21 was induced in skeletal muscle of a diabetic patient (1.94-fold), which was reciprocally changed to p-AMPK (0.30-fold). CONCLUSIONS: The outcomes of this research provide novel information as to how USP21 in skeletal muscle contributes to systemic energy homeostasis, demonstrating USP21 as a key molecule in the regulation of myofibre type switch, muscle mass control, mitochondrial function, and heat generation and, thus, implicating the potential of this molecule and its downstream substrates network as targets for the treatment and/or prevention of muscle dysfunction and the associated metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Humanos , Camundongos , Músculo Esquelético/metabolismo , Obesidade , Estresse Oxidativo , Fenótipo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo
15.
Adv Sci (Weinh) ; 8(14): 2004973, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34306974

RESUMO

Regulatory T cells play a key role in immune tolerance to self-antigens, thereby preventing autoimmune diseases. However, no drugs targeting Treg cells have been approved for clinical trials yet. Here, a chimeric peptide is generated by conjugation of the cytoplasmic domain of CTLA-4 (ctCTLA-4) with dNP2 for intracellular delivery, dNP2-ctCTLA-4, and evaluated Foxp3 expression during Th0, Th1, Treg, and Th17 differentiation dependent on TGF-ß. The lysine motif of ctCTLA-4, not tyrosine motif, is required for Foxp3 expression for Treg induction and amelioration of experimental autoimmune encephalomyelitis (EAE). Transcriptome analysis reveals that dNP2-ctCTLA-4-treated T cells express Treg transcriptomic patterns with properties of suppressive functions. In addition, the molecular interaction between the lysine motif of ctCTLA-4 and PKC-η is critical for Foxp3 expression. Although both CTLA-4-Ig and dNP2-ctCTLA-4 treatment in vivo ameliorated EAE progression, only dNP2-ctCTLA-4 requires Treg cells for inhibition of disease progression and prevention of relapse. Furthermore, the CTLA-4 signaling peptide is able to induce human Tregs in vitro and in vivo as well as from peripheral blood mononuclear cells (PBMCs) of multiple sclerosis patients. These results collectively suggest that the chimeric CTLA-4 signaling peptide can be used for successful induction of regulatory T cells in vivo to control autoimmune diseases, such as multiple sclerosis.


Assuntos
Antígeno CTLA-4/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Animais , Antígeno CTLA-4/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/genética , Recidiva
16.
iScience ; 24(5): 102411, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997693

RESUMO

Enhanced stemness in colorectal cancer has been reported and it contributes to aggressive progression, but the underlying mechanisms remain unclear. Here we report a Wnt ligand, Dickkopf-2 (DKK2) is essential for developing colorectal cancer stemness. Genetic depletion of DKK2 in intestinal epithelial or stem cells reduced tumorigenesis and expression of the stem cell marker genes including LGR5 in a model of colitis-associated cancer. Sequential mutations in APC, KRAS, TP53, and SMAD4 genes in colonic organoids revealed a significant increase of DKK2 expression by APC knockout and further increased by additional KRAS and TP53 mutations. Moreover, DKK2 activates proto-oncogene tyrosine-protein kinse Src followed by increased LGR5 expressing cells in colorectal cancer through degradation of HNF4α1 protein. These findings suggest that DKK2 is required for colonic epithelial cells to enhance LGR5 expression during the progression of colorectal cancer.

17.
Biomaterials ; 274: 120845, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971559

RESUMO

Sepsis is an acute systemic inflammatory disease triggered by bacterial infection leading organ dysfunctions that macrophages are responsible for major triggering of systemic inflammation. Treatment options are limited to antibiotics and drugs to manage the symptoms of sepsis, but there are currently no molecular-targeted therapies. Here, we identified a novel macrophage-preferable delivery peptide, C10, which we conjugated to truncated domains of NLRX1 (leucine-rich repeat region (LRR), and nucleotide binding domain (NBD)) to obtain C10-LRR and C10-NBD. Leucine rich amino acid of C10 enables macrophage preferable moieties that efficiently deliver a cargo protein into macrophages in vitro and in vivo. C10-LRR but not C10-NBD significantly improved survival in an LPS-mediated lethal endotoxemia sepsis model. C10-LRR efficiently inhibited IL-6 production in peritoneal macrophages via prevention of IκB degradation and p65 phosphorylation. In addition, C10-LRR negatively regulated IL-1ß production by preventing caspase-1 activation with a sustained mitochondrial MAVS level. Finally, co-treatment with anti-TNFα antibody and C10-LRR had a synergistic effect in an LPS-induced sepsis model. Collectively, these findings indicate that C10-LRR could be an effective therapeutic agent to treat systemic inflammation in sepsis by regulating both NF-κB and inflammasome signaling activation.


Assuntos
Inflamassomos , Sepse , Humanos , Leucina , Lipopolissacarídeos , Macrófagos , Proteínas Mitocondriais , NF-kappa B , Sepse/tratamento farmacológico
18.
Biomolecules ; 11(2)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567666

RESUMO

Excess and sustained endoplasmic reticulum (ER) stress, paired with a failure of initial adaptive responses, acts as a critical trigger of nonalcoholic fatty liver disease (NAFLD) progression. Unfortunately, there is no drug currently approved for treatment, and the molecular basis of pathogenesis by ER stress remains poorly understood. Classical ER stress pathway molecules have distinct but inter-connected functions and complicated effects at each phase of the disease. Identification of the specific molecular signal mediators of the ER stress-mediated pathogenesis is, therefore, a crucial step in the development of new treatments. These signaling nodes may be specific to the cell type and/or the phase of disease progression. In this review, we highlight the recent advancements in knowledge concerning signaling nodes associated with ER stress and NAFLD progression in various types of liver cells.


Assuntos
Estresse do Retículo Endoplasmático , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais , Animais , Modelos Animais de Doenças , Humanos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
19.
Adv Mater ; 32(39): e2003368, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32812291

RESUMO

Cancer immunotherapies, including adoptive T cell transfer and immune checkpoint blockades, have recently shown considerable success in cancer treatment. Nevertheless, transferred T cells often become exhausted because of the immunosuppressive tumor microenvironment. Immune checkpoint blockades, in contrast, can reinvigorate the exhausted T cells; however, the therapeutic efficacy is modest in 70-80% of patients. To address some of the challenges faced by the current cancer treatments, here T-cell-membrane-coated nanoparticles (TCMNPs) are developed for cancer immunotherapy. Similar to cytotoxic T cells, TCMNPs can be targeted at tumors via T-cell-membrane-originated proteins and kill cancer cells by releasing anticancer molecules and inducing Fas-ligand-mediated apoptosis. Unlike cytotoxic T cells, TCMNPs are resistant to immunosuppressive molecules (e.g., transforming growth factor-ß1 (TGF-ß1)) and programmed death-ligand 1 (PD-L1) of cancer cells by scavenging TGF-ß1 and PD-L1. Indeed, TCMNPs exhibit higher therapeutic efficacy than an immune checkpoint blockade in melanoma treatment. Furthermore, the anti-tumoral actions of TCMNPs are also demonstrated in the treatment of lung cancer in an antigen-nonspecific manner. Taken together, TCMNPs have a potential to improve the current cancer immunotherapy.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Imunoterapia/métodos , Nanopartículas/uso terapêutico , Linfócitos T/imunologia , Linhagem Celular Tumoral , Humanos , Nanomedicina
20.
Theranostics ; 10(7): 3138-3150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194859

RESUMO

Multiple sclerosis (MS) is a demyelinating inflammatory disease of the central nervous system (CNS), which is a chronic progressive disease and is caused by uncontrolled activation of myelin antigen specific T cells. It has high unmet medical needs due to the difficulty of efficient drug delivery into the CNS to control tissue inflammation. In this study, we demonstrate that a fusion protein of NOD-like receptor family member X1 (NLRX1) and blood brain barrier (BBB)-permeable peptide, dNP2 ameliorates experimental autoimmune encephalomyelitis (EAE). Methods: We purified recombinant LRR or NBD regions of NLRX1 protein conjugated with dNP2. To examine intracellular delivery efficiency of the recombinant protein, we incubated the proteins with Jurkat T cells or murine splenic T cells and their delivery efficiency was analyzed by flow cytometry. To investigate the therapeutic efficacy in an EAE model, we injected the recombinant protein into mice with 3 different treatment schemes e.g., prevention, semi-therapeutic, and therapeutic. To analyze their functional roles in T cells, we treated MACS-sorted naïve CD4 T cells with the proteins during their activation and differentiation into Th1, Th17, and Treg cells. Results: dNP2-LRR protein treatment showed significantly higher delivery efficiency than TAT-LRR or LRR alone in Jurkat T cells and mouse splenic T cells. In all three treatment schemes of EAE experiments, dNP2-LRR administration showed ameliorated tissue inflammation and disease severity with reduced number of infiltrating T cells producing inflammatory cytokines such as IFNγ. In addition, dNP2-LRR inhibited T cell activation, cytokine production, and Th1 differentiation. Conclusion: These results suggest that dNP2-LRR is a novel agent, which regulates effector T cell functions and could be a promising molecule for the treatment of CNS autoimmune diseases such as multiple sclerosis.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Portadores de Fármacos/administração & dosagem , Encefalomielite Autoimune Experimental/tratamento farmacológico , Proteínas Mitocondriais/química , Linfócitos T/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Barreira Hematoencefálica , Peptídeos Penetradores de Células/farmacocinética , Portadores de Fármacos/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Linfocinas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/farmacocinética , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Domínios Proteicos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Organismos Livres de Patógenos Específicos , Medula Espinal/metabolismo , Medula Espinal/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...